PROBLEM 1

Simplify the following expression using in part the direct calculation and in part the "nablaräkning":

(a)
$$grad(fg)$$
 $f = r^3$ (b) $div(f \overline{A})$ $g = 1/r^2$ (c) $rot(f \overline{A})$ Where:(d) $div(\overline{A} \times \overline{B})$ $\overline{B} = (z, y, x)$ (e) $(\overline{A} \cdot \nabla)\overline{B}$ $r = \sqrt{x^2 + y^2 + z^2}$

PROBLEM 2

Use "nablaräkning" to calculate:

$$(a) \quad \left(\overline{b} \cdot \nabla\right) \left(\phi \overline{a}\right) =$$

$$(b) \quad \left(\overline{b} \cdot \nabla\right) \left(\overline{a} \times \overline{b}\right) =$$

PROBLEM 3

Write in suffix notation the following expressions:

- (a) $\nabla \phi =$
- (b) $\nabla \cdot \overline{a} =$
- (c) $\nabla \times \overline{a} =$

Use suffix notation (indexräkning) to prove the following expressions:

(d) $\nabla r = \hat{e}_r$ (e) $\nabla \cdot \overline{r} = 3$ (f) $\nabla \times \overline{r} = 0$ Where: $\overline{r} = (x, y, z)$ $r = \sqrt{x^2 + y^2 + z^2}$

PROBLEM 4

Use "nablaräkning" to show that:

(a)
$$grad(\overline{a} \cdot \overline{r}) = \overline{a}$$

(b) $div(\overline{r}) = 3$
(c) $div(\phi(r)\overline{r}) = 3\phi(r) + r\frac{d\phi}{dr}$
 $\overline{r} = (x, y, z)$
Where: $r = \sqrt{x^2 + y^2 + z^2}$
 $\overline{a}, \overline{b}$ are constant vectors

PROBLEM 5

Calculate the integral: $\iiint_{V} \overline{A} \cdot \overline{B} dV$

Where \overline{A} has a scalar potential: $grad\phi = \overline{A}$ and the boundary surface of *V* is an equipotential surface for ϕ . Moreover, $div\overline{B}=0$ in *V*.

PROBLEM 6

Calculate the flux integral:

$$\bigoplus_{S} (\overline{a} \times \overline{r}) \times d\overline{S}$$

Where \overline{a} is a constant vector, $\overline{r}=(x,y,z)$ and *S* is a sphere with radius=1 centered in the point \overline{b} .