Simplify the following expression using in part the direct calculation and in part the "nablaräkning":
(a) $\operatorname{grad}(f g)$
$f=r^{3}$
Where: $\quad \bar{A}=\left(x^{2}, y^{2}, z^{2}\right)$
$\bar{B}=(z, y, x)$
$g=1 / r^{2}$
$r=\sqrt{x^{2}+y^{2}+z^{2}}$
(b) $\operatorname{div}(f \bar{A})$
(c) $\operatorname{rot}(f \bar{A})$
(d) $\operatorname{div}(\bar{A} \times \bar{B})$
(e) $(\bar{A} \cdot \nabla) \bar{B}$

PROBLEM 2

Use "nablaräkning" to calculate:
(a) $(\bar{b} \cdot \nabla)(\phi \bar{a})=$
(b) $(\bar{b} \cdot \nabla)(\bar{a} \times \bar{b})=$

PROBLEM 3

Write in suffix notation the following expressions:
(a) $\nabla \phi=$
(b) $\nabla \cdot \bar{a}=$
(c) $\nabla \times \bar{a}=$

Use suffix notation (indexräkning) to prove the following expressions:
(d) $\nabla r=\hat{e}_{r}$
(e) $\nabla \cdot \bar{r}=3$
(f) $\nabla \times \bar{r}=0$

$$
\text { Where: } \begin{aligned}
& \bar{r}=(x, y, z) \\
& \\
& r=\sqrt{x^{2}+y^{2}+z^{2}}
\end{aligned}
$$

PROBLEM 4

Use "nablaräkning" to show that:
(a) $\operatorname{grad}(\bar{a} \cdot \bar{r})=\bar{a}$
(b) $\quad \operatorname{div}(\bar{r})=3$
(c) $\operatorname{div}(\phi(r) \bar{r})=3 \phi(r)+r \frac{d \phi}{d r}$

$$
\begin{array}{ll}
& \bar{r}=(x, y, z) \\
\text { Where: } & r=\sqrt{x^{2}+y^{2}+z^{2}} \\
& \bar{a}, \bar{b} \text { are constant vectors }
\end{array}
$$

PROBLEM 5

Calculate the integral: $\iiint_{V} \bar{A} \cdot \bar{B} d V$
Where \bar{A} has a scalar potential: $\operatorname{grad} \phi=\bar{A}$ and the boundary surface of V is an equipotential surface for ϕ. Moreover, $\operatorname{div} \bar{B}=0$ in V.

PROBLEM 6

Calculate the flux integral: $\quad \oiint_{S}(\bar{a} \times \bar{r}) \times d \bar{S}$
Where \bar{a} is a constant vector, $\bar{r}=(x, y, z)$ and S is a sphere with radius=1 centered in the point \bar{b}.

