
PROBLEM 1 
Simplify the following expression using in part the direct calculation and in  part the “nablaräkning”: 
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PROBLEM 2 
Use “nablaräkning” to calculate: 
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PROBLEM 3 
Write in suffix notation the following expressions: 

( )
( )
( )

ˆ( )
( ) 3
( ) 0

r

a
b a
c a

d r e
e r
f r

φ∇ =
∇⋅ =
∇× =

∇ =
∇⋅ =
∇× =

Use suffix notation (indexräkning) to prove the following expressions: 
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Where: 



PROBLEM 4 

Use “nablaräkning” to show that: 
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are constant vectors 
Where: 

PROBLEM 5 
Calculate the integral: 
 
Where A has a scalar potential: gradφ=Α and the boundary  
surface of V is an equipotential surface for φ . Moreover,  divB=0 in V. 
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PROBLEM 6 

Calculate the flux integral: ( )
S

a r dS× ×∫∫
Where a is a constant vector, r=(x,y,z) and S is a sphere with radius=1  
centered in the point b. 
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